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Abstract 
This paper presents a method for analyzing users’ 
computer mouse interaction data with the aim to 
implicitly identify users’ task completion difficulty while 
interacting with a system. Computer mouse motion 
streams and users’ skin conductance signals, acquired 
via an in-house developed computer mouse, and users’ 
feedback were investigated as reactions to task 
difficulty raising events. A classification algorithm was 
developed, producing real-time user models of user 
hesitation states. Preliminary results of a study in 
progress with seven older adults at work (age 56+) 
provide initial indications about links between mouse 
triggering states of user hesitation and task completion 
difficulty. 

Author Keywords 
Computer Mouse; Sensors; Older Adults; User Study. 

ACM Classification Keywords 
H.5.2. Information interfaces and presentation (e.g., 
HCI): User Interfaces. 

Introduction 
With the advent of highly dynamic and fast emerging 
technologies and software, users are required to adapt 
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their mental models, skills and habitual ways of 
working. This requirement is further intensified, when 
combined with eventual age-related cognitive 
degradations of older adults [1], causing task 
completion difficulty and eventually a negative user 
experience. 

Assisting older adults while interacting with systems is 
of critical importance in today’s information society. 
Researchers and practitioners alike have shown an 
increased interest lately in understanding behavior 
patterns and possible difficulties of older adults 
imposed by current visual and interaction designs of 
interactive systems [2, 3]. A number of research works 
exist that proposed various intelligent user interfaces 
and systems for supporting older adults at work and 
motivating them to stay for longer active and 
productive in computerized working environments [4, 
5]. An important challenge of such intelligent and 
assistive interactive systems is how to implicitly identify 
that users have difficulties with a given task [6], and 
accordingly assist the users, e.g. by providing 
personalized and contextualized support [7]. 

In this context, this paper presents an implicit user 
data collection method for identifying users’ task 
completion difficulty by leveraging computer mouse 
motion streams and a skin conductance sensor that is 
embedded in an in-house developed computer mouse. 
This work is part of CogniWin project, which aims to 
provide an innovative personalized system, motivating 
older adults to stay for longer active, and improving 
their productivity in the workplace. The paper is 
structured as follows: next we present related works, 
and subsequently we describe the developed computer 
mouse, named CogniMouse. Afterwards, we present the 

methodology and preliminary results of a user study 
that evaluated the accuracy of the computer mouse’s 
task difficulty identification method. We conclude with 
practical implications and future prospects of this work. 

Related Work 
The literature proposes several systems that leverage 
users’ computer mouse interaction data in order to 
implicitly infer important information about the users’ 
behavior patterns. Principally, the raw mouse data 
being extracted and processed includes time-stamped 
and chronologically ordered sequences of a stream of 
data including the x-y cursor position of the mouse on 
the screen, mouse hover, mouse scrolling and mouse 
click events (left and right clicks) [8-11]. 

Research works have proposed various approaches for 
distinguishing users’ behavior patterns, such as user 
hesitation, reading or reading by tracing text, clicking 
and scrolling [8, 9, 10]. Reeder and Maxion [8] 
proposed an automated method for identifying user 
hesitation with the aim to detect instances of user 
difficulty while interacting with a system. Based on a 
hesitation detector algorithm that takes as input a 
time-stamped, chronologically ordered data stream of 
mouse and keyboard events, user hesitation was 
defined as anomalously long pauses between events in 
a given data stream. Arroyo et al. [9] proposed a Web 
logging system that tracks mouse movements in 
Websites illustrating mouse trajectories of users’ 
interactions that indicate users’ reading behavior and 
hesitation in the menu area. A preliminary study of 
Mueller and Lockerd [10] revealed that users often 
move the mouse cursor to an empty white space of the 
Webpage in case they are hesitating in order to avoid 
accidental clicks on hyperlinks.  
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revealed that users having difficulty with particular 
tasks scored higher user hesitation values compared to 
users that did not face any major task completion 
difficulties. Although the analysis yielded statistical 
significant results, these results shall be confirmed in 
further studies with a larger sample and users with 
varying profiles and ages. Finally, we believe that even 
though this study is focused on older adults, in general, 
identifying task completion difficulty through the 
computer mouse could be suitable for other age 
groups. 

In the future, we intend to contextualize the mouse 
data so that the system provides adaptive support 
taking the user’s task into account, when difficulty is 
identified. Moreover, further sensors shall be embedded 
in CogniMouse to detect additional user behaviors, as 
well as information from other devices, such as an eye 
tracker, which will be integrated in order to trigger 
personalized assistance.  
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