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A key challenge of adaptive interactive systems is to provide a positive user experience by extracting 
implicitly the users’ unique characteristics through their interactions with the system, and 
dynamically adapting and personalizing the system’s content presentation and functionality. Among 
the different dimensions of individual differences that could be considered, this work utilizes the 
cognitive styles of users as determinant factors for personalization. The overarching goal of this 
paper is to increase our understanding about the effect of cognitive styles of users on their navigation 
behavior and content representation preference. We propose a Web-based tool, utilizing Artificial 
Intelligence techniques, to implicitly capture and find any possible relations between the cognitive 
styles of users and their characteristics in navigation behavior and content representation preference 
by using their Web interaction data. The proposed tool has been evaluated with a user study 
revealing that cognitive styles of users have an effect on their navigation behavior and content 
representation preference. Research works like the reported one are useful for improving implicit 
and intelligent user modeling in engineering adaptive interactive systems. 

 
‡ A preliminary, condensed version of this work was presented in Mining Humanistic Data Workshop 2012 [35] 
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1.   Introduction 

Engineering interactive systems under the notion of user-centric design approaches does 
not always intuitively embed features that correspond to the users’ characteristics and 
needs. A challenge met especially in current interactive systems is to dynamically adapt 
the content presentation and functionality of the system based on implicitly retrieved 
information about the user, aiming to improve usability and provide a positive user 
experience. Various research works exist in the literature that propose different 
approaches for Web adaptation and personalization, like [3] that proposes an approach 
for adapting user interfaces based on the cultural preferences of users, [4] that proposes 
an adaptive spellchecker and predictor for people with dyslexia that can adapt its model 
and interface according to the users’ individual behavior, and [5] that proposes an 
implicit user modeling approach that automatically adapts the layout and position of 
virtual keyboards based on how and where users are grasping the tablet device. 

Major commercial Web service providers nowadays have also shown an increased 
interest in providing personalized services to their users. These service providers have 
been offering personalized results and recommendations by employing various intelligent 
user modeling and adaptation techniques. Popular approaches for recommendation 
include collaborative filtering and content-based filtering [1, 6]. Collaborative filtering 
first collects and analyzes data about the users’ interactions with the system or the users’ 
preferences, and then predicts for the rest of the users their future preferences based on 
the similarity of their interests. Content-based filtering creates a user profile based on a 
weighted vector of the item features appearing in the content which is more frequently 
visited by the user. The weights indicate the importance of each feature to the user. 
Furthermore, various algorithms are employed to recommend new items that are similar 
to the weighted vector of the user. Various machine learning techniques are used to 
predict user preference or estimate the probability that users will like particular items, 
like cluster analysis, classification, decision trees, and artificial neural networks. 
Although the notion of personalization has found its way in users’ everyday interactions 
in Web interactive systems, various research issues are still open with regards to the most 
influential factors of personalization, such as the behavioral drivers and navigation 
interaction of users in executing task-oriented reasoning processes. In addition, there is 
lack of understanding of the relation between individual styles and cognition levels and 
interactive behavior within interactive systems. Some illustrative examples are given 
below. 

An interesting example is the case of users’ interactions with online content, such as 
content included in encyclopedia articles. In that case, based on observations of human 
behavior and preference, the personalization process could influence both the way 
content is represented as well as the way the content is structured, and thus may have a 
significant impact on improving the users’ experience. Assuming that the content of Web 
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interactive systems can be presented in two ways, either a visual or a verbal 
representation illustrating the same content, and users may go through the content in a 
specific navigation pattern (or navigation behavior), this work suggests that individual 
differences in cognitive styles, which describe the way individuals perceive, process and 
organize information [7], might be applied effectively for facilitating the user modeling 
process of adaptive Web interactive systems [8]. The most widely accredited cognitive 
style dimensions are the Verbal/Imager dimension, that indicates the habitual approach 
and preference of users representing information verbally or graphically, and the 
Wholist/Analyst dimension, which describes the way individuals organize and process 
information in a holistic or an analytic approach [7, 11]. 

One of the main challenges in adaptive interactive systems is which characteristics of 
users should be included in the user model that is ultimately used for adaptation, and how 
to extract and represent these characteristics [9]. Especially in the case of modeling 
personality traits like cognitive styles, there are no easy ways to capture them during Web 
interactions. Prior work of the authors [10], has revealed that particular cognitive styles 
of individuals (i.e., Wholist/Analyst cognitive styles) can affect their navigation behavior 
in terms of linear/non-linear navigation behavior within Web-based environments based 
on specific navigation metrics that measure the degree of linearity an individual interacts 
with hyperlinks. In particular, various clustering techniques were performed on the Web 
navigation metrics obtained from user hyperlink interactions within a controlled Web 
environment. The clustering techniques used, aimed to group users that had similar 
interactions with hyperlinks, i.e., followed the same navigation in terms of linear and 
non-linear behavior, and further investigated whether there is a relationship with the 
cognitive styles of users, regarding the Wholist/Analyst dimension. The experiments 
were based on a user study of 106 individuals which navigated through the Web 
environment. The results revealed that the clustering process grouped consistently the 
users in the same groups based on their common navigation behavior. In addition, an 
intra-cluster analysis revealed that individuals that retain a global view of information 
(i.e., Wholists) had a more linear approach in navigation behavior (i.e., the users’ 
interactions with hyperlinks tended to be sequential rather than scattered). 

Furthermore, a number of research works exist in the related literature that aim to 
implicitly elicit cognitive styles of users based on their navigation behavior that focus 
primarily on the Wholist/Analyst dimension [31, 32, 33]. However, implicit user 
modeling approaches for eliciting the Verbal/Imager cognitive style of users are very 
scarce in the literature. In this respect, another challenge is to also investigate whether the 
Verbal/Imager cognitive style could be implicitly elicited based on the users’ Web 
interaction data. Given that Verbal/Image cognitive style may be effectively correlated 
with content representation of hypermedia environments [8], a first approach for 
highlighting differences in cognitive styles based on users’ Web interaction data would 
be to infer preference of users toward content representation based on the time they are 
active (implying interest) in verbal or visual representations of the same content. These 
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correlations, once found, can improve dramatically the effectiveness of the personalized 
services and content delivery of Web systems. 

In this context, main aim is to increase our understanding about the effect of cognitive 
styles of users on their navigation behavior, but as well as the content representation they 
prefer the most and increase their overall user experience. Thus, we extend our previous 
work as follows: i) we investigate whether there is an effect of the Verbal/Imager 
cognitive style dimension on users’ preference of verbal or visual content representation, 
something which has not been reported in any prior work to the best of our knowledge, 
and ii) we further investigate the effect of the Wholist/Analyst cognitive style dimension 
on the navigation behavior of users based on a different representation scheme of Web 
navigation patterns than the one already proposed in [10] (i.e., based on sequence 
vectors). In particular, the more detailed analysis includes, apart from the investigation of 
the existence of a relation between linear/non-linear navigation behavior and the 
Wholist/Analyst dimension, whether the navigation path typically followed by the users 
of the same typology is similar or not. In other words, we investigate whether users with 
common cognitive characteristics have the tendency to follow exactly the same nodes in 
the hypermedia environment. Such a finding would further strengthen the range of valid 
metrics used until now for the implicit users’ navigation behavior extraction in Web 
adaptive interactive systems. 

The innovative aspects of this work lie in the introduction of a novel approach for 
implicitly capturing the users’ interactions utilizing the structure of the Web environment, 
taking into consideration the distances between hyperlinks, the transition of users among 
hyperlinks utilizing sequence vectors, and the cognitive styles of users based on 
psychometric tests. The rest of this paper is organized as follows: in Section 2, we 
provide an overview of the related work and background theory. In Section 3 we present 
the user study conducted based on the proposed approach and we analytically discuss our 
results. Consequently, we conclude the paper in Section 4. 

2.   User Modeling 

In this section we provide related material to user modeling and in particular, i) the 
underlying theory of cognitive styles utilized in this work, ii) an analysis of popular 
Artificial Intelligence techniques utilized by user modeling mechanisms in the context of 
adaptive interactive systems, and iii) related works on modeling cognitive styles utilizing 
data mining techniques on the users’ Web interaction data. 

2.1.   Cognitive Style Theory 

Research on cognitive styles is an area of human sciences to explain empirically observed 
differences in mental representation and processing of information. Different theories 
have been proposed over time suggesting that individuals have differences in the way 
they process and remember information. Due to the multi-dimensional nature of cognitive 
styles, a global definition has not been given to date. Nevertheless, in a global electronic 
survey of 94 individual style researchers and experts [11] from the European Learning 
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Styles Information Network (ELSIN) who were asked to comment on the state of the 
field and their own understanding of the phenomenon being studied, the majority agreed 
that “cognitive styles are individual differences in processing that are integrally linked to 
a person's cognitive system. More specifically, they are a person's preferred way of 
processing (perceiving, organizing and analyzing) information using cognitive brain-
based mechanisms and structures. They are partly fixed, relatively stable and possibly 
innate preferences”. 

The work of Riding and Cheema [12] is considered an important turning point for 
cognitive style research [13]. They conducted a survey of approximately thirty different 
cognitive styles and concluded that most of the proposed theories measured two broad 
style dimensions; i) a Verbal/Imager dimension that refers to how individuals process 
information and indicates their preference for representing information verbally (Verbals) 
or in mental pictures (Imagers), and ii) a Wholist/Analyst dimension that refers to how 
individuals organize information and indicates a preference of structuring information as 
a whole (Wholists) or structuring the information in segmented parts (Analysts). In 
addition, users with a Wholist cognitive style are supposed to take a linear approach in 
hypermedia navigation, whereas Analysts are supposed to take a non-linear approach in 
hypermedia navigation. 

Accordingly, Riding [7] proposed a computerized Cognitive Styles Analysis (CSA) test 
which highlights differences on these two broad dimensions. In this context, among the 
numerous proposed theories of cognitive styles [7, 14, 15], the proposed work utilizes 
Riding’s CSA [7, 12] and the psychometric test since its implications may be mapped on 
Web environments as illustrated in Figure 1, and respond directly to different aspects of 
the Web information space [8]. In particular, the CSA implications may provide clear 
guidelines in the context of Web design, i.e., selecting to present visual or verbal content 
and structuring information flow in a wholistic or analytic manner. 

Figure 1. Riding’s CSA Scale Mapping to Web Environments 
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2.2.   Artificial Intelligence Techniques for User Modeling 

User modeling is essential for adapting interactive systems which includes various 
characteristics about the users that are taken into consideration for the different 
adaptation effects provided. User modeling embraces various challenges, such as what 
user characteristics are important to be modeled and utilized by the adaptation 
mechanism, and how to extract these characteristics and further generate the user models. 
The simplest approach of user model generation is in the case where the information 
collected by the user is utilized as-is and remains unprocessed. For example, in an online 
video streaming system users might explicitly express their interest on specific movie 
genres which can be further used by simple rule-based mechanisms to adapt the interface 
by recommending movies that belong to the selected genres. 

Given that user characteristics, needs and preferences might change over time, as well 
as, in many cases, users are unwilling to provide such information [16, 17, 18], explicit 
user model generation approaches usually result in user models becoming inaccurate over 
time. In this respect, a challenge is to implicitly and dynamically generate user models 
utilizing more sophisticated approaches, like cases where the browsing activities of users 
may be utilized by data mining and machine learning techniques to recognize regularities 
in user paths and integrate them in a user model. For example, in the context of the online 
video streaming system, mentioned above, the system would monitor the users’ 
interaction data that might be useful for inferring information about the users, e.g., track 
how users rated movies of a particular genre, or how long they remained active in 
particular Web-pages.  

A thorough literature review on how data mining techniques can be applied to user 
modeling in the context of Web personalization systems may be found in [19, 20, 21]. 
The data mining techniques reported enable pattern discovery through clustering, 
classification, association rules, and Markov chains for Web personalization purposes. 
Clustering or fuzzy clustering techniques group users together that share common 
characteristics or similar navigation behavior [22, 23, 24]. Classification techniques map 
user information (e.g., interaction data) into one of several predetermined classes which 
usually represent different user profiles [25]. Association rule techniques aim at 
generating associations and correlations among sets of items [26, 27]. Markov chains are 
used to represent the transitions of users within the Web environment [28, 29, 30] and 
they are introduced as a possible indication of which is the next page users might request 
to visit based on their current location and previous navigation paths. Thus, in the context 
of a Web application, representation schemes, like the ones in Markov chains can be 
utilized to represent the transition of users between Web-pages, using for example 
sequence vectors, and thus identify groups of users following same or similar paths.  

2.3.   Data Mining for Eliciting Cognitive Styles of Users 

Various works have investigated the effect of cognitive styles on navigation behavior and 
learning patterns. Chen et al. [31] investigated how cognitive styles affect students’ 
learning patterns in Web-based instruction programs utilizing statistical and data-mining 
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techniques and consequently suggested design guidelines that take into consideration 
individual differences in cognitive styles for improving the learning process and user 
experience within Web-based instruction programs. Frias-Martinez et al. [32] utilized a 
number of clustering techniques to understand human behavior and perception in relation 
with cognitive styles, expertise and gender differences of digital library users. Hsu and 
Chen [33] investigated how learners’ cognitive styles affect their navigation behavior 
through data mining techniques as well as analyzed how navigation behavior may 
influence performance in education environments. 

The aforementioned works primarily focus on how individuals use search 
mechanisms and navigation tools (e.g., navigation maps, index of pages) and aim to 
cluster users based on the number of times each feature of the tools is used and further 
related to the users’ cognitive styles regarding the Wholist/Analyst dimension. A 
challenging endeavor is to follow and monitor the interaction path of users during their 
experience with a Web environment. So, instead of monitoring usage, this paper proposes 
an alternative approach to user modeling by monitoring the users’ sequence of links 
visited in a Web environment through an online tool that utilizes specific user interaction 
metrics aiming to examine how users navigate based on their cognitive styles regarding 
the Wholist/Analyst dimension. Additionally, in contrast to previous works that primarily 
focus only on the Wholist/Analyst dimension, this work also investigates the effect of 
cognitive styles regarding the Verbal/Imager dimension on users’ content representation 
preference. 

To this end, the overarching aim of this work is to increase our understanding and 
knowledge on supporting usable interaction designs with implicit user modeling based on 
users’ cognitive styles and Web interaction data, through the use of a particular set of 
Artificial Intelligence techniques (i.e., clustering and sequence vector modeling). 

3.   User Study 

This section explains the experimental procedure of the study, the process followed to 
obtain the cognitive styles of users and their Web interaction data, and the analysis and 
discussion of results. The analysis is based on a set of measures for cognitive styles, 
distance measures based on the structure of the Web environment and sequence vectors 
representing the transitions of users among hyperlinks. 

3.1.   Participants 

A total of 78 undergraduate students of the University of Cyprus participated in the study 
(age of 17-25, with a mean age of 21 years old). The participants’ native language was 
Greek, with knowledge of English as a second language. The participants first completed 
the cognitive styles elicitation process utilizing Riding’s CSA test [7], and further 
navigated in a reproduced version of Wikipedia.org. With the aim to increase the users’ 
navigation activity, participants were assigned 10 problem-based tasks whose answers 
could be found inside the Wikipedia articles to investigate their behavior in solving the 
problem-based tasks they had been assigned. 
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xi represents the identifier of links visited, i.e., i=1 is the first link visited (x1 is equal to 
1), i=2 the second (x2 is equal to 2) and so on, and N is the number of total links clicked. 
Thus the distance between sequential links is assumed to be equal to 1. 
ܮܦܣ  = ଵݔ| − 1| + ∑ ௜ݔ| − ௜ିଵ|ே௜ୀଶܰݔ  

 
To better explain the metric used, we provide an example navigation, e.g., the click 
stream navigation pattern “nav_2_4 | nav_2_2 | nav_2_3”, which indicates that the user 
visited article with ID=2 and then read the content of the fourth, second and third 
hyperlink of the navigation menu in the system. For this particular navigation, as defined 
above, the ADL metric is then calculated as: ADL=(|4-1|+|2-4|+|3-2|)/3=2. Accordingly, a 
high number of the metric indicates that the user followed a non-linear navigation 
behavior, whereas a small number of the metric indicates a linear navigation behavior. 
 
Sequence Vector  
Sequence vectors, inspired by Markov models are also used as metrics. Markov models 
or Markov chains are mathematical systems that consist of a discrete number of states 
and some known probabilities pij, where pij is the probability of moving from state i to 
state j. The representation power of Markov chains (particularly of sequence vectors) 
have been utilized to represent the navigation paths followed by the users through their 
interactions with hyperlinks in each article. The navigation sequence of a Web user is 
represented as a multidimensional probability matrix so that each element (i, j) in the 
sequence matrix indicates the proportion of visits to state j at the next transition, given the 
present state i. For example, given the sequence of visits of a user, s1 = 2-4-3-1-2, is 
represented by the sequence vector v1 = (0, 2, 4, 3, 1, 2, 0), where 0 indicates that the 
user starts the sequence and ends the sequence of navigation.  

The sequence matrix is given as: 

Markov models have not been used to the extent of their probabilistic nature which could 
be beneficial for predicting, based on probabilities, the future navigation sequences of 
users. 

3.4.   Design of Analysis 

Traditional statistics were first performed aiming to investigate whether there is an effect 
of cognitive styles on the content representation preference, and the navigation behavior 
of users. A series of analysis of variance (ANOVA) was performed in which the 
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independent variable was the cognitive styles of users, and the dependent variables were 
the total time (in seconds) spent in each content representation version of the content (i.e., 
textual or graphical), and the Web interaction data metric (i.e., the ADL metric and the 
sequence vectors for each user). 

Secondly, a series of cluster analyses was performed on all the interaction data 
obtained during the user study. The analyses included the following phases: First, we 
defined the optimum number of clusters using the two-step cluster analysis [34]. In the 
two-step process, in the first step, cases are assigned into pre-clusters and these pre-
clusters are treated as single cases and in the second step using the hierarchical algorithm 
to cluster the pre-clusters. The analysis is based on an agglomerative hierarchical 
clustering method, which utilizes single-linkage clustering to determine which number of 
clusters is the optimal in each case. Particularly, we produced a range of 2-cluster 
solutions to 5-cluster solutions and then checked them one by one based on the clustering 
criterion of Schwarz’s Bayesian Criterion (BIC) and selected the solutions that had the 
lowest BIC value, which represented the most well-separated clusters. After defining the 
number of optimal solutions (clusters) we utilized k-means clustering to obtain the cluster 
memberships, distance information, and the final cluster centers. In particular, the k-
means clustering analysis was used to obtain the membership value ranging from 1 to the 
number of clusters and the distance from the cluster center for each user. The distance 
was measured using the Euclidean distance between each case and its classification 
center.  

Since the data are derived from different users carrying out different navigations, they 
may be considered having the same probability distribution as the rest sequences of 
navigation, and thus all are mutually independent or generated independently. In addition, 
since the users were not directed in any way, the possible navigation patterns and user 
interactions with the user interface were close to a very large number. That is why k-
means clustering was selected for the analysis, to avoid calculating all possible distances 
between all possible interactions.  

3.5.   Analysis of Results 

In this section we present the results of the traditional statistics and clustering performed 
on the total view times indicating the content representation preference, the Web 
navigation metric and the sequence vector representations. 
 
Users’ Content Representation Preference and Cognitive Styles 
The total time spent on the verbal version of the content and the total time spent on the 
graphical/diagrammatical version of the content (viewing time) was used to infer the 
users’ preference toward a particular type of content presentation.  

An ANOVA was performed to study the effect of cognitive styles (i.e., Verbal, 
Intermediate, Imager) on the total view time of each content representation type (i.e., 
textual and graphical content). A graphical illustration of the results is presented in Figure 
5. 
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Users’ Navigation Behavior and Cognitive Styles 
Next, we present the results obtained after the analyses performed on the content visit 
path followed by the users. In particular, both statistical and cluster analyses were 
performed on the Web navigation metric (ADL), whereas cluster analysis was performed 
on the sequence vectors. 
 
Analysis of Web Navigation Metric Results 
An ANOVA was performed to study the effect of cognitive styles on the navigation 
behavior of users based on the Web navigation metric (as defined in Section 3.3). Results 
revealed that the participants had significant differences in their navigation behavior 
based on their cognitive styles (F(2,78)=14.004, p<0.001). In particular, Wholists (Mean: 
1.09, Std. Dev.: 0.55) and Intermediates (Mean: 1.12, Std. Dev.: 0.5) followed a more 
linear navigation since the majority of them had a Web navigation metric very close to 1. 
Whereas the majority of Analysts (Mean: 2.02, Std. Dev.: 0.98) had a Web navigation 
metric greater than 2, indicating a non-linear navigation behavior. The existence of high 
standard deviation values of the metric indicates that the relation found between 
navigation behavior and cognitive styles does not hold for all users. This is however 
expected, considering the complex nature of human-related data such as the users’ 
cognitive styles and navigation behavior, for which it is extremely hard to obtain general 
relations holding in every single case. In this respect, further studies need to be conducted 
to reach to more concrete conclusions about the relations between the Wholist/Analyst 
dimension and navigation behavior. 

K-means clustering was also performed on the Web navigation metric value of each 
user to investigate the feasibility of eliciting the cognitive styles of users based on their 
navigation behavior in Web environments. Figure 7 illustrates the generated clusters and 
the distribution of users within each cluster according to their cognitive styles. Results 
reveal that the clustering performed grouped the users in different clusters, however, with 
varying cognitive styles. In particular, Cluster #1 contains in the majority Intermediates, 
and half of the Wholists and Analysts of the total sample. Cluster #2 includes the rest of 
the Analysts and Wholists and a few Intermediates. In this respect, no safe conclusions 
can be drawn whether users with similar cognitive styles have the same navigation 
behavior. Nevertheless, taking a closer look to the Intermediates’ cognitive style ratios in 
Cluster #1, we observed that these users tended to be Wholists (i.e., their ratio were quite 
low and thus may be treated as Light Wholists) indicating that the majority of these users 
grouped in Cluster #1 (i.e., the Wholists and Light Wholists) had similar linear navigation 
behavior. Cluster #2 contains users of variant cognitive typologies since that particular 
cluster contains users that did not have any clear/extreme navigation behavior in terms of 
linear or non-linear behavior, and therefore we cannot infer anything about the existence 
of a relation between their cognitive styles and navigation behavior.  
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adaptation rules, based on the abovementioned relationship, for designing better, implicit, 
automatic and dynamic user-centric Web interactive systems. 

In sum, results revealed that cognitive styles of users (taking into account the 
Verbal/Imager dimension) could be inferred, i.e., a strong significant relationship was 
found between the users’ cognitive styles and preference toward a specific type of 
content, based on their total viewing time of Web-pages that contain visual or verbal 
information. A practical implication of this finding, is that user modeling techniques 
could be improved so that they would implicitly create the user model, by tracking the 
users’ total viewing time on a particular Web-page, that would be priory categorized 
based on its content (text- or image-based) and further utilized to infer the users’ 
preference toward a particular type of content representation, and their cognitive style 
based on the Verbal/Imager dimension. 

Furthermore, regarding the analysis of navigation behavior and cognitive styles, using 
the Web navigation metric, users were found to have significant differences in their 
navigation behavior based on their cognitive style with respect to the Wholist/Analyst 
dimension. However, the clustering performed grouped the users in different clusters, 
but, with varying cognitive styles, so further user studies need to be conducted before any 
safe conclusions may be drawn. Nevertheless, the clustering of users, based on the 
sequence vectors has shown some promising results and was effective to locate users 
with similar navigation behavior and in the same cognitive typology. This observation 
was made since consistently and in many cases the clustering technique grouped in the 
same clusters homogeneous users based on their navigation behavior and cognitive styles. 

Another practical implication of this work could be the creation of an improved 
personalization engine that would implicitly and dynamically identify the cognitive styles 
of Web-site visitors based on their navigation behavior and view time of particular pages, 
and further feed an adaptation engine with the user models providing different adaptation 
effects. Content adaptation effects based on different cognitive styles of users could for 
example present content in diagrammatical representation in case of an Imager user, or 
present content in a Verbal representation in case of a Verbal user. Adaptive navigation 
support could also be provided to users with particular cognitive styles by adapting the 
sequence of hyperlinks to support a holistic and guided navigation approach for Wholists, 
or a more analytic and scattered navigation approach for Analysts. 

Given that this work is an initial and indeed challenging approach to understand the 
relation of cognitive styles and users’ Web interaction data, further studies need to be 
conducted in order to reach to more concrete conclusions about the effect of cognitive 
styles of users on their navigation behavior and content representation preference. 

Our future research steps include to further investigate the needs, preferences and 
behaviors of users by analyzing their interactions in other Web environments and in 
particular domains of discourse, such as educational, commercial and collaborative. A 
particular challenge in these environments is the analysis of their more complex 
structures, and also take into consideration effects caused by the social networks, 
collaborative-filtering, advertisements and other factors that cause implications. Another 
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interesting issue includes additional analysis of visual objects such as, drop down lists, 
search engines and drag and drop features that could influence the users’ interactions. 
Finally, future work can include in the tool proposed, Markov models theory or Bayesian 
networks for the prediction of the behavior of new users in the system, without 
monitoring their interaction from beginning to end, and implicitly creating their user 
model using advanced Artificial Intelligence methods. 
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